Section 1-9, Mathematics 108
The Coordinate Plane

Note I, II, III and IV are called quadrants.

To graph a region
$\{(x, y): x \geq 0\}$

To Graph a horizontal line
$\{(x, y) \mid y=1\}$

Another Region
$\{(x, y)||y|<2\}$

Distance Between Two Points

Label two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

Using the lengths of the legs of the right triangle,
$\left|x_{2}-x_{1}\right|$ and $\left|y_{2}-y_{1}\right|$
And the Pythagorean Theorem
we see that
$(A B)^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
or that the length of $A B$ is
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example:

Find the distance between $(5,7)$ and $(2,3)$
$D=\sqrt{(5-2)^{2}+(7-3)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
Example:
Which point $A(1,-2)$ or $B(8,9)$ is closer to $C(5,3)$
$A C=\sqrt{(5-1)^{2}+\left(3-{ }^{-} 2\right)^{2}}=\sqrt{16+25}=\sqrt{41}$
$B C=\sqrt{(5-8)^{2}+(3-9)^{2}}=\sqrt{9+36}=\sqrt{45}$
$\sqrt{41}<\sqrt{45}$ so $A C$ is closer.

The Midpoint Formula

For points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ the mid point is
$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
To prove this use the distance formula to show that $A M=B M=A B / 2$.
$A M=\sqrt{\left(x_{1}-\frac{x_{1}+x_{2}}{2}\right)^{2}+\left(x_{1}-\frac{x_{1}+x_{2}}{2}\right)^{2}}=$
$\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}=\frac{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}{2}=\frac{A B}{2}$
Similarly
$B M=\frac{A M}{2}$
Example:
What is the midpoint of $(9,3)$ and $(-3,5)$
$M=\left(\frac{9+-3}{2}, \frac{3+5}{2}\right)=(3,4)$

Example:

Given the four points $(1,2),(2,7),(5,9)$ and $(4,4)$
prove that they are the vertices of a parallelogram by showing that their diagonals bisect each other.

Do this by showing they have the same midpoint.

$$
\begin{aligned}
& M P_{1}=\left(\frac{2+4}{2}, \frac{7+4}{2}\right)=\left(3, \frac{11}{2}\right) \\
& M P_{2}=\left(\frac{1+5}{2}, \frac{2+9}{2}\right)=\left(3, \frac{11}{2}\right)
\end{aligned}
$$

So Yes! a Parallelogram.

Graphing a line

Recall from geometry that 2 points determine a line so
if $2 x-y=3$
We can pick $x=0$ and get $y=-3$
and we can pick $y=0$ and get $x=3 / 2$

These points are called the X and Y intercepts because they cross the X and Y axes.

Graphing an absolute value equation

Let $y=|x-2|$
Note that at $x=2$ there is a critical point where the graph will change direction.
Let's pick 3 points including the critical point, one before it and one after:
$x=2 \quad(2,0)$
$x=0 \quad(0,2)$
$x=4 \quad(4,2)$

Graphing a parabola using intercepts

Let $y=x^{2}-4=(x+2)(x-2)$
The two x intercepts are at $x=\{1,-2\}$
The y intercept is at -4

Graphing a Circle

Let a circle be centered at (h, k) with radius R.

Then if (x, y) is a point on the circle, we can use the distance formula:
$D[(h, k),(x, y)]=R$
$\sqrt{(x-h)^{2}+(y-k)^{2}}=R$
Squaring both sides we get the equation of a circle:
$(x-h)^{2}+(y-k)^{2}=R^{2}$

Example:

Find the equation of a circle centered at $(2,-5)$ with radius 3
$(x-2)^{2}+(y--5)^{2}=3^{2}$
$(x-2)^{2}+(y+5)^{2}=9$

Example:

Graph the equation
$x^{2}+y^{2}=25$
$(x-0)^{2}+(y-0)^{2}=5^{2}$
So this is a circle centered at $(0,0)$ with radius 5

Example:

$(1,8)$ and $(5,-6)$ are points on the diameter of a circle.
What is the equation of the circle?
Half the distance between the points will be the radius:
$R=\frac{\sqrt{(1-5)^{2}+\left(8-{ }^{-} 6\right)^{2}}}{2}=\frac{\sqrt{16+196}}{2}=\frac{\sqrt{212}}{2}=\sqrt{53}$
The center will be at the midpoint of the two points:
$(h, k)=\left(\frac{1+5}{2}, \frac{8+{ }^{-} 6}{2}\right)=(3,1)$

So the equation will be
$(h-3)^{2}+(k-1)^{2}=(\sqrt{53})^{2}=53$

Symmetry in Graphs

Note that the parabola $y=x^{2}$ is symmetric with respect to the Y-axis.

Note that for every point (x, y) on the graph, the point $(-x, y)$ will also be on the graph.
So if we substitute $-x$ for x in the equation, we get the same equation:

$$
y=(-x)^{2}=x^{2}
$$

If you can substitute $-y$ for y without changing the equation, then the graph will be symmetric about the X-axis.

If (x, y) being on the graph means that $(-x,-y)$ then substituting $-x$ for x and $-y$ for y will not change the equation, and the graph is symmetric about the origin.

Example:

Check this equation for symmetry.
$y=x^{3}-9 x$

Substituting $-x$ for $-x$ gives:
$y=(-x)^{3}-9(-x)=-x^{3}+9 x$

So the graph is not symmetric around the Y-axis.
Substituting $-y$ for $-y$ gives:
$-y=x^{3}-9 x$
$y=-x^{3}+9 x$
So the graph is not symmetric around the Y-axis.
Substituting $-x$ for $-x$ and $-y$ for $-y$ gives:
$-y=(-x)^{3}-9(-x)=-x^{3}+9 x$
$y=x^{3}-9 x$
So the graph will be symmetric about the origin:

